On the implication problem for probabilistic conditional independency
نویسندگان
چکیده
The implication problem is to test whether a given set of independencies logically implies another independency. This problem is crucial in the design of a probabilistic reasoning system. We advocate that Bayesian networks are a generalization of standard relational databases. On the contrary, it has been suggested that Bayesian networks are different from the relational databases because the implication problem of these two systems does not coincide for some classes of probabilistic independencies. This remark, however, does not take into consideration one important issue, namely, the solvability of the implication problem. In this comprehensive study of the implication problem for probabilistic conditional independencies, it is emphasized that Bayesian networks and relational databases coincide on solvable classes of independencies. The present study suggests that the implication problem for these two closely related systems differs only in unsolvable classes of independencies. This means there is no real difference between Bayesian networks and relational databases, in the sense that only solvable classes of independencies are useful in the design and implementation of these knowledge systems. More importantly, perhaps, these results suggest that many current attempts to generalize Bayesian networks can take full advantage of the generalizations made to standard relational databases.
منابع مشابه
Probabilistic Conditional Independence under Schema Certainty and Uncertainty
Conditional independence provides an essential framework to deal with knowledge and uncertainty in Artificial Intelligence, and is fundamental in probability and multivariate statistics. Its associated implication problem is paramount for building Bayesian networks. Saturated conditional independencies form an important subclass of conditional independencies. Under schema certainty, the implica...
متن کاملConstructing the Dependency Structure of a Multiagent Probabilistic Network
ÐA probabilistic network consists of a dependency structure and corresponding probability tables. The dependency structure is a graphical representation of the conditional independencies that are known to hold in the problem domain. In this paper, we propose an automated process for constructing the combined dependency structure of a multiagent probabilistic network. Each domain expert supplies...
متن کاملConditional logic of actions and causation
In this paper we present a new approach to reasoning about actions and causation which is based on a conditional logic. The conditional implication is interpreted as causal implication. This makes it possible to formalize in a uniform way causal dependencies between actions and their immediate and indirect effects. The proposed approach also provides a natural formalization of concurrent action...
متن کاملInformation-theoretic characterizations of conditional mutual independence and Markov random fields
We take the point of view that a Markov random field is a collection of so-called full conditional mutual independencies. Using the theory of -Measure, we have obtained a number of fundamental characterizations related to conditional mutual independence and Markov random fields. We show that many aspects of conditional mutual independence and Markov random fields have very simple set-theoretic ...
متن کاملReasoning about Saturated Conditional Independence Under Uncertainty: Axioms, Algorithms, and Levesque's Situations to the Rescue
The implication problem of probabilistic conditional independencies is investigated in the presence of missing data. Here, graph separation axioms fail to hold for saturated conditional independencies, unlike the known idealized case with no missing data. Several axiomatic, algorithmic, and logical characterizations of the implication problem for saturated conditional independencies are establi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Systems, Man, and Cybernetics, Part A
دوره 30 شماره
صفحات -
تاریخ انتشار 2000